

Mong-Fan Wang

6916087

BTECH 451
Parallella Epiphany

ABSTRACT

This report is a summary of my progress in the fourth year Bachelor of Technology project. I

am working with a senior engineer in Compucon New Zealand, attempting to further the

research and development on a relatively new technology named the Epiphany.

Parallel computing is a type of computation where there are many calculations carried out

simultaneously. Unlike traditional computing where one problem generally gets solved with

one processor, parallel computing takes the problem and divide them into smaller ones if

possible, and they get processed at the same time.

Epiphany is a coprocessor with extremely low power consumption, this allows for a very high

performance per watt when utilised in parallel computing. My project will verify the claims

of the emerging technology, while also attempt in developing some applications for it.

TABLE OF CONTENTS
Abstract .. 1

Company .. 3

Project Brief .. 3

Purpose ... 3

People ... 3

Hardware & Background... 4

Epiphany ... 4

Parallella .. 4

Epiphany Architecture ... 4

Threading .. 4

Threaded MPI .. 4

COPRTHR SDK .. 5

STDCL ... 5

Epiphany Layout ... 5

Device Setup... 6

Parallella Setup ... 6

SD Card Formatting ... 6

Expanding Image ... 6

SSH Setup .. 7

COPRTHR Setup .. 8

Programming ... 10

Hello World Example .. 10

Dot Product Example .. 13

Epiphany BSP - Hello World ..15

xTemp .. 18

Parallela Epiphany Workspace Creation .. 19

Epiphany Program Execution .. 20

Cuurent & Future Work ... 21

References .. 22

COMPANY

Compucon New Zealand is a wholly New Zealand owned company since April 2011, that

manufactures computer systems and has excellent reputation and quality in the reseller and

user communities.

Partnering with world class component manufacturers, Compucon offers high quality and

reliable computer system builds.

Compucon New Zealand also specialises in high performance parallel computing and this will

be the main focus of this project.

The company has had many University of Auckland students since 2002 completing projects

with them in the Bachelor of Technology program.

PROJECT BRIEF

PURPOSE
The aim of this project is to verify the claims of the Epiphany manufacturer and develop a

number of applications to drive this new technology. The programs will be coded in the C or

C++ language, as these are low level languages, they communicate with the chip much better

than a high level language like Python.

PEOPLE
TN Chan is the General Manager of Compucon New Zealand, as well as the full supervisor of

this project. David Fielder is the Senior Engineer of the company who assists me and provides

hands-on guidance in the Compucon House one day a week.

HARDWARE & BACKGROUND

EPIPHANY
A co-processor manufactured by Parallela, the particular model I am working with has 16

high performance RISC CPU cores, programmable with both C/C++ and OpenCL.

Advantages include very low wattage for power consumption and being very flexible in terms

of scalability.

PARALLELLA
The co-processor runs on the Parallela board which is a credit card sized board, includes a

Gigabit Ethernet connection, HDMI port and 1 GB of SDRAM.

EPIPHANY ARCHITECTURE
As the Epiphany is a co-processor, it cannot do everything that a normal CPU can. Instead, it

is a simplified processor that carries out specialised tasks. This is a disadvantage of the

Epiphany, however, it is also the advantage at the same time as being specific makes it much

more energy efficient than a standard CPU. Memory on the Epiphany uses little-endian.

Doubles are not supported.

THREADING
 Multi-Threading improving performance

 CPU utilisation is better

 IO latency hiding

THREADED MPI
Threaded MPI is the go to architecture for the Parallella Epiphany. The fully divergent RISC

cores allow high performance with inter-core data movement and maximise data re-use.

Brown Deer Technology claims that the programming is very easy, performance is great and

the libraries are readily available. It is also only going to get easier as technology progresses.

Part of my project is also to verify the claims of Brown Deer.

The power efficiency of the Epiphany rivals many other processes in the market today and

threaded MPI works perfectly aligned with that goal.

COPRTHR SDK
This term stands for the CO-PRocessing THReads. It is a SDK that provides libraries and tools

for developers that are developing multi-core applications. It provides support for the

Parallella in OpenCL and STDCL for the Epiphany co-processor.

STDCL
This is a portable API for targeting compute offload accelerators and co-processors.

EPIPHANY LAYOUT

DEVICE SETUP

PARALLELLA SETUP
The following hardware are required:

 Parallella Board

 4-Port Powered USB Hub

 8 GB Micro-SD Card with an Adapter

 Micro-USB to USB (Female) Cable

 Micro-HDMI to HDMI (Female) Cable

 Crossover Ethernet Cable

The following software is required:

 https://www.parallella.org/create-sdcard/

o The Manufacturer has included 4 versions of the Ubuntu image:

 Desktop Headless

 Desktop with Display

 Kickstarter Headless

 Kickstarter with Display

For the board I am working with, I will be using both the Desktop Headless and with

Display.

SD CARD FORMATTING
The SD card houses the Operating System for the Parallella.

Use the SDFormatter to fully erase the SD card. Now use a Win32 Disk Imager program to

load the file containing the Parallella image onto the SD card. It may appear that there are

no files in the SD card from Windows Explorer, however, this is normal. Safely eject the SD

card and pop it into the Parallella.

EXPANDING IMAGE
This command shows that only a small portion of the SD Card is available for use:

df -h

By entering the following series of commands, the image will be expanded so that the entire

SD card’s storage size can be utilised correctly.

dmesg | grep "root"

root=/dev/mmcblk0p2

/dev/mmcblk0p2 is the root partition, expand this by entering:

fdisk /dev/mmcblk0

Enter ‘m’ for help. Delete partition 2 (root partition), then create a new partition 2. Enter ‘d’

followed by ‘2’ to delete the root partition. Then ‘n’ followed by ‘p’ and 2’’ to create a new

partition 2. For the first and last sector, select default. Enter ‘p’ to confirm and write it to disk

with ‘w’.

Machine is then rebooted with:

sudo shutdown -r now

After reboot, enter:

resize2fs /dev/mmcblk0p2

This ensures the resize.

SSH SETUP

WINDOWS

Microsoft Windows does not have built in SSH, this means PuTTY for Windows is used. It can

be downloaded from:

 http://www.putty.org/

LINUX

In Linux, SSH is built in the Terminal.

NETWORK CONNECTION

There are two ways to connect to the Parallella board. Finding the IP address assigned to the

machine, or assigning a static address to it.

DYNAMIC IP

Find the IP address of the Parallella board by using any sort of network tool that displays all

devices connected in a Local Area Network.

STATIC IP

Edit the file “/etc/network/interfaces” to contain the following lines:

auto eth0

iface eth0 inet static

 address 10.0.0.3/8

 up route add 10.0.0.2 dev eth0

Edit the file “/etc/hostname” and assign the board a hostname, then edit \etc\hosts and add

the following line:

10.0.0.2 [Hostname]

Reboot the board to allow the operating system to process the changes.

Running ifconfig in the terminal should confirm that your board’s IP address is now 10.0.0.3.

COPRTHR SETUP
WINDOWS

Run the Windows installer from https://github.com/browndeer/coprthr (libstdcl-1.4.0-win7-

install.msi) and set the appropriate paths to use the headers and library.

LINUX

Pre-requistites:

 Linux Ubuntu

 libelf-0.8.13.tar.gz (www.mr511.de/software/libelf-0.8.13.tar.gz)

 libevent-2.0.18-stable.tar.gz (github.com/downloads/libevent/libevent/libevent-

2.0.18-stable.tar.gz)

 libconfig-1.4.8.tar.gz (www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz)

 m4-1.4.16.tar.gz (http://ftp.gnu.org/gnu/m4/)

 flex-2.5.35.tar.gz (http://flex.sourceforge.net/)

 bison-2.5.tar.gz (http://ftp.gnu.org/gnu/bison/)

Pre-compiled Package:

 coprthr-1.5.0-rc2-parallella.tgz

The libraries are unpacked by entering the following commands:

./configure

sudo make install

Unpacking the file will produce a directory browndeer/.

Enter following commands to remove previous installations as well as installing the new

version:

sudo ./browndeer/uninstall_coprthr_parallella.sh

https://github.com/browndeer/coprthr
http://www.mr511.de/software/libelf-0.8.13.tar.gz
http://www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz
http://www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz
http://www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz
http://www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz
http://ftp.gnu.org/gnu/m4/
http://flex.sourceforge.net/
http://ftp.gnu.org/gnu/bison/

sudo ./browndeer/install_coprthr_parallella.sh

Finally, add the following environmental variables to PATH:

export PATH=/usr/local/browndeer/bin:$PATH

export

LD_LIBRARY_PATH=/usr/local/browndeer/lib:/usr/local/lib:$LD_L

IBRARY_PATH

PROGRAMMING

The Parallela uses a host/device structure, meaning every application needs a corresponding

program for each side.

While the programs are separate, all files are created and stored on the host (in this case the

ARM chip)

HELLO WORLD EXAMPLE

DEVICE PROGRAM - E_HELLO_WORLD.C
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "e_lib.h"

int main(void) {

 const char ShmName[] = "hello_shm";

 const char Msg[] = "Hello World from core

0x%03x!";

 char buf[256] = { 0 };

 e_coreid_t coreid;

 e_memseg_t emem;

 unsigned my_row;

 unsigned my_col;

 coreid = e_get_coreid();

 e_coords_from_coreid(coreid, &my_row, &my_col);

 if (E_OK != e_shm_attach(&emem, ShmName)) {

 return EXIT_FAILURE;

 }

 snprintf(buf, sizeof(buf), Msg, coreid);

 if (emem.size >= strlen(buf) + 1) {

 e_write((void*)&emem, buf, my_row, my_col, NULL,

strlen(buf) + 1);

 } else {

 return EXIT_FAILURE;

 }

 return EXIT_SUCCESS;

}

HOST PROGRAM - HELLO_WORLD.C
#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <errno.h>

#include <unistd.h>

#include <e-hal.h>

const unsigned ShmSize = 128;

const char ShmName[] = "hello_shm";

const unsigned SeqLen = 20;

int main(int argc, char *argv[])

{

 unsigned row, col, coreid, i;

 e_platform_t platform;

 e_epiphany_t dev;

 e_mem_t mbuf;

 int rc;

 srand(1);

 e_set_loader_verbosity(H_D0);

 e_set_host_verbosity(H_D0);

 e_init(NULL);

 e_reset_system();

 e_get_platform_info(&platform);

 rc = e_shm_alloc(&mbuf, ShmName, ShmSize);

 if (rc != E_OK)

 rc = e_shm_attach(&mbuf, ShmName);

 if (rc != E_OK) {

 fprintf(stderr, "Failed to allocate shared memory.

Error is %s\n",

 strerror(errno));

 return EXIT_FAILURE;

 }

 for (i=0; i<SeqLen; i++)

 {

 char buf[ShmSize];

 row = rand() % platform.rows;

 col = rand() % platform.cols;

 coreid = (row + platform.row) * 64 + col +

platform.col;

 printf("%3d: Message from eCore 0x%03x (%2d,%2d): ",

i, coreid, row, col);

 e_open(&dev, row, col, 1, 1);

 e_reset_group(&dev);

 if (E_OK != e_load("e_hello_world.elf", &dev, 0, 0,

E_TRUE)) {

 fprintf(stderr, "Failed to load

e_hello_world.elf\n");

 return EXIT_FAILURE;

 }

 usleep(10000);

 e_read(&mbuf, 0, 0, 0, buf, ShmSize);

 printf("\"%s\"\n", buf);

 e_close(&dev);

 }

 e_shm_release(ShmName);

 e_finalize();

 return 0;

}

DOT PRODUCT EXAMPLE

DEVICE PROGRAM - E_TASK.C
#include <stdio.h>

#include <stdlib.h>

#include "e-lib.h"

#include "common.h"

int main(void)

{

 unsigned *a, *b, *c, *d;

 int i;

 a = (unsigned *) 0x2000;//Address of a matrix

(transfered here by host)

 b = (unsigned *) 0x4000;//Address of b matrix

(transfered here by host)

 c = (unsigned *) 0x6000;//Result

 d = (unsigned *) 0x7000;//Done

 //Clear Sum

 (*(c))=0x0;

 //Sum of product calculation

 for (i=0; i<N/CORES; i++){

 (*(c)) += a[i] * b[i];

 }

 //Raising "done" flag

 (*(d)) = 0x00000001;

 //Put core in idle state

 __asm__ __volatile__("idle");

}

HOST PROGRAM - MAIN.C
#include <stdlib.h>

#include <stdio.h>

#include <e-hal.h>

#include "common.h"

#define RESULT 85344 //recognize /Sum_{i=0}^{n-1} i^2 =

\frac{N(N-1)(2N-1)}{6}

int main(int argc, char *argv[]){

 e_platform_t platform;

 e_epiphany_t dev;

 int a[N], b[N], c[CORES];

 int done[CORES],all_done;

 int sop;

 int i,j;

 int sections = N/CORES; //assumes N % CORES = 0

 unsigned clr = 0;

 //Calculation being done

 printf("Calculating sum of products of two integer vectors

of length %d initalized from (0..%d) using %d Cores.\n",N,N-

1,CORES);

 printf("........\n");

 //Initalize Epiphany device

 e_init(NULL);

 e_reset_system();

//reset Epiphany

 e_get_platform_info(&platform);

 e_open(&dev, 0, 0, platform.rows, platform.cols); //open

all cores

 //Initialize a/b input vectors on host side

 for (i=0; i<N; i++){

 a[i] = i;

 b[i] = i;

 }

 //Load program to cores

 e_load_group("e_task.elf", &dev, 0, 0, platform.rows,

platform.cols, E_FALSE);

 //1. Copy data (N/CORE points) from host to Epiphany local

memory

 //2. Clear the "done" flag for every core

 for (i=0; i<platform.rows; i++){

 for (j=0; j<platform.cols;j++){

 e_write(&dev, i, j, 0x2000,

&a[(i*platform.cols+j)*sections], sections*sizeof(int));

 e_write(&dev, i, j, 0x4000,

&b[(i*platform.cols+j)*sections], sections*sizeof(int));

 e_write(&dev, i, j, 0x7000, &clr, sizeof(clr));

 }

 }

 // start cores

 e_start_group(&dev);

 //Check if all cores are done

 while(1){

 all_done=0;

 for (i=0; i<platform.rows; i++){

 for (j=0; j<platform.cols;j++){

 e_read(&dev, i, j, 0x7000, &done[i*platform.cols+j],

sizeof(int));

 all_done+=done[i*platform.cols+j];

 }

 }

 if(all_done==CORES){

 break;

 }

 }

 //Copy all Epiphany results to host memory space

 for (i=0; i<platform.rows; i++){

 for (j=0; j<platform.cols;j++){

 e_read(&dev, i, j, 0x6000, &c[i*platform.cols+j],

sizeof(int));

 }

 }

 //Calculates final sum-of-product using Epiphany results as

inputs

 sop=0;

 for (i=0; i<CORES; i++){

 sop += c[i];

 }

 //Print out result

 printf("Sum of Product Is %d!\n",sop);

 //Close down Epiphany device

 e_close(&dev);

 e_finalize();

 if(sop==RESULT){

 return EXIT_SUCCESS;

 }

 else{

 return EXIT_FAILURE;

 }

}

EPIPHANY BSP - HELLO WORLD

DEVICE PROGRAM - E_CORE_HELLO.C
#include <e_bsp.h>

int main()

{

 bsp_begin();

 int n = bsp_nprocs();

 int p = bsp_pid();

 ebsp_message("Hello world from core %d/%d", p, n);

 bsp_end();

 return 0;

}

HOST PROGRAM - HOST_HELLO.C
#include <host_bsp.h>

#include <stdio.h>

int main(int argc, char **argv)

{

 bsp_init("ecore_hello.srec", argc, argv);

 bsp_begin(bsp_nprocs());

 ebsp_spmd();

 bsp_end();

 return 0;

}

RUNNING MAKEFILE

PROGRAM OUTPUT

XTEMP
The xTemp utility is a program under the Parallella Utility package, where the temperature

of the board can be visualised. With SSH access, X11 forwarding is needed to see the

graphical output on the remote connection.

PARALLELA EPIPHANY WORKSPACE CREATION
The following commands in the Terminal or PuTTY SSH connection will allow the workspace

creation. This will allow for easier programming on the Epiphany.

cd ~/Downloads

wget

ftp://ftp.parallella.org/esdk/old/esdk.5.13.07.10_linux_x86_6

4_armv7l.tgz

sudo mkdir -p /opt/adapteva

sudo mv esdk.5.13.07.10_linux_x86_64_armv7l.tgz /opt/adapteva

cd /opt/adapteva

sudo tar xvf esdk.5.13.07.10_linux_x86_64_armv7l.tgz

sudo ln -sTf esdk.5.13.07.10 /opt/adapteva/esdk

sudo apt-get install libmpfr-dev libgmp3-dev libmpc-dev

openjdk-6-jre tcsh csh g++ -y

sudo nano /etc/environment

PATH=”/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin

:/bin:/usr/games:/usr/local/games:/opt/adapteva/esdk/tools/e-

gnu/bin”

EPIPHANY_HOME=”/opt/adapteva/esdk”

LD_LIBRARY_PATH=”/usr/lib:/usr/lib/x86_64-linux-gnu”

cd /usr/lib/x86_64-linux-gnu

sudo cp libmpc.so libmpc.so.2

sudo ldconfig

sudo cp libmpfr.so libmpfr.so.1

sudo cp libgmp.so libgmp.so.3

sudo nano /opt/adapteva/esdk/tools/host/bin/echo-process

Save empty file

sudo chmod 777 /opt/adapteva/esdk/tools/host/bin/echo-process

e-eclipse

Create a workspace and name the project. Since the Epiphany is 16 core in this case, we must

have the settings of:

Number of rows = 4

Number of columns = 4

Row number in first core = 32

Column number of first core = 8

This creates a master project for all projects that will be created.

To program the Epiphany, we now change the host name to the Epiphany IP address or host

name in our network. The ‘stop at main’ checkbox should be unticked and both ‘Resume’ and

‘Verbose mode’ should be ticked.

The final step is to right click the first core project and complete the following:

C/C++ Build → Settings → Epiphany Linker → Linker Description File

Change Select LDF to: ${EPIPHANY_HOME}/bsps/current/legacy.ldf

In the Epiphany Linker, add e-lib to the libraries, then apply these settings to all of the

projects. A dialog should pop up showing success messages if completed correctly.

EPIPHANY PROGRAM EXECUTION

Type e-server in the Terminal.

The Epiphany listens on the port 51000 by default.

CUURENT & FUTURE WORK

As outlined, the first half of the project is research based, with the second half being much

more practical. I have already moved towards the practical side of things as I attend seminars

and do in house experiments with the senior Engineer. Currently I am in the middle of

experimenting with Threaded MPI from Brown Deer Technology and looking at Bulk Sync

Parallel computing as well.

Future work will include finishing up the experimentation and move on to utilising some of

the core functions to develop applications that may be of use to the Epiphany architecture.

REFERENCES

Compucon.co.nz. (2009). Compucon Computers NZ - Quality Servers and Workstations - Company

Profile. [online] Available at: http://www.compucon.co.nz/content/view/27/242/.

Suzannejmatthews.github.io. (2016). Technical Musings : Parallella Setup Tutorial. [online]

Available at: http://suzannejmatthews.github.io/2015/05/29/setting-up-your-parallella/.

Adapteva, (2011). Epiphany Architecture Reference. [online] Available at:

http://www.adapteva.com/docs/epiphany_arch_ref.pdf.

Adapteva, (2016). Epiphany Datasheet [online] Available at:

http://adapteva.com/docs/e16g301_datasheet.pdf.

Brown Deer Tecnology, (2013) COPRTHR API Reference. [online] Available at:

http://www.browndeertechnology.com/docs/coprthr_api_ref.pdf.

http://www.compucon.co.nz/content/view/27/242/
http://suzannejmatthews.github.io/2015/05/29/setting-up-your-parallella/
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
http://adapteva.com/docs/e16g301_datasheet.pdf
http://www.browndeertechnology.com/docs/coprthr_api_ref.pdf

