BTECH 451

Parallella Epiphany

(. COMPUCON

* x|
\\\ *//'/’

THE UNIVERSITY OF

Te Whare Wananga o Tamaki Makaurau

g aki Makaur:
NEW ZEALAND

Mong-Fan Wang
6916087

ABSTRACT

This report is a summary of my progress in the fourth year Bachelor of Technology project. |
am working with a senior engineer in Compucon New Zealand, attempting to further the
research and development on a relatively new technology named the Epiphany.

Parallel computing is a type of computation where there are many calculations carried out
simultaneously. Unlike traditional computing where one problem generally gets solved with
one processor, parallel computing takes the problem and divide them into smaller ones if
possible, and they get processed at the same time.

Epiphany is a coprocessor with extremely low power consumption, this allows for a very high
performance per watt when utilised in parallel computing. My project will verify the claims
of the emerging technology, while also attempt in developing some applications for it.

TABLE OF CONTENTS

AADSEIACT -ttt 1
(@0 001 o= 1 | PO O PSP PPPPPPPRRTT 3
PrOJECE Brief .. e 3
PUIPOSE . 3
PROPIE .t 3
Hardware & Background.............ooii s 4
B P P ANY e 4
Parallella. ...t e et e e e e e e e e anees 4
Epiphany Archit@CtUre........ooeii e 4
TRFEAAING ..ttt 4

L 1 C=T= T L=To 1 1YL= PRSP 4
COPRTHR SDK ...ttt ettt ettt ekt e e ab e st e et e e e e e anne e e 5

) I L TP 5
EPIPNANY LAYOUL ... 5
DEVICE SETUP...ciiiii i 6
Parallella SETUP ... s 6
SD Card FOrMattingoooeieii i 6
EXPaNding IMageooiiiiiiiiei e 6
SSH SLUP . 7
COPRTHR S@TUP . ettt e e e et e e e e e e e r e e e e e e e e e e nnnnes 8
Programming ... 10
Hello World EXamPle et 10
DOt Product EXAmMIPIEottt e 13
Epiphany BSP - HEllo WOrldooiiiee e 15

D =] 0] o TP 18
Parallela Epiphany Workspace Creationcccooiiiiiiiiiiiic e 19
Epiphany Program EXECULIONccuiiiiiiiiec e 20
CUUrent & FULUIE WOTKo 21

RO O OIS .. e e e 22

COMPANY

Compucon New Zealand is a wholly New Zealand owned company since April 2011, that
manufactures computer systems and has excellent reputation and quality in the reseller and
user communities.

Partnering with world class component manufacturers, Compucon offers high quality and
reliable computer system builds.

Compucon New Zealand also specialises in high performance parallel computing and this will
be the main focus of this project.

The company has had many University of Auckland students since 2002 completing projects
with them in the Bachelor of Technology program.

PROJECT BRIEF

PURPOSE

The aim of this project is to verify the claims of the Epiphany manufacturer and develop a
number of applications to drive this new technology. The programs will be coded in the C or
C++language, asthese are low level languages, they communicate with the chip much better
than a high level language like Python.

PEOPLE

TN Chan is the General Manager of Compucon New Zealand, as well as the full supervisor of
this project. David Fielder is the Senior Engineer of the company who assists me and provides
hands-on guidance in the Compucon House one day a week.

HARDWARE & BACKGROUND

EPIPHANY
A co-processor manufactured by Parallela, the particular model | am working with has 16
high performance RISC CPU cores, programmable with both C/C++ and OpenCL.
Advantages include very low wattage for power consumption and being very flexible in terms
of scalability.

PARALLELLA

The co-processor runs on the Parallela board which is a credit card sized board, includes a
Gigabit Ethernet connection, HDMI port and 1 GB of SDRAM.

EPIPHANY ARCHITECTURE

As the Epiphany is a co-processor, it cannot do everything that a normal CPU can. Instead, it

is a simplified processor that carries out specialised tasks. This is a disadvantage of the
Epiphany, however, itis also the advantage at the same time as being specific makes it much
more energy efficient than a standard CPU. Memory on the Epiphany uses little-endian.
Doubles are not supported.

THREADING

e Multi-Threading improving performance
e CPU utilisation is better
e 10 latency hiding

THREADED MPI

Threaded MPI is the go to architecture for the Parallella Epiphany. The fully divergent RISC
cores allow high performance with inter-core data movement and maximise data re-use.

Brown Deer Technology claims that the programming is very easy, performance is great and
the libraries are readily available. It is also only going to get easier as technology progresses.
Part of my project is also to verify the claims of Brown Deer.

The power efficiency of the Epiphany rivals many other processes in the market today and
threaded MPI works perfectly aligned with that goal.

COPRTHR SDK

This term stands for the CO-PRocessing THReads. It is a SDK that provides libraries and tools
for developers that are developing multi-core applications. It provides support for the
Parallella in OpenCL and STDCL for the Epiphany co-processor.

STDCL

This is a portable API for targeting compute offload accelerators and co-processors.

EPIPHANY LAYOUT

4 MESH NODE

DMA
RISC CPU ENGINE
Local Network
Memory Inteeface

\& B/,

Image credit. Epiphany Manual

DEVICE SETUP

PARALLELLA SETUP

The following hardware are required:

Parallella Board

4-Port Powered USB Hub

8 GB Micro-SD Card with an Adapter
Micro-USB to USB (Female) Cable
Micro-HDMI to HDMI (Female) Cable
Crossover Ethernet Cable

The following software is required:

https://www.parallella.org/create-sdcard/
o The Manufacturer has included 4 versions of the Ubuntu image:
= Desktop Headless
= Desktop with Display
= Kickstarter Headless
= Kickstarter with Display
For the board | am working with, | will be using both the Desktop Headless and with
Display.

SD CARD FORMATTING

The SD card houses the Operating System for the Parallella.

Use the SDFormatter to fully erase the SD card. Now use a Win32 Disk Imager program to

load the file containing the Parallella image onto the SD card. It may appear that there are

no files in the SD card from Windows Explorer, however, this is normal. Safely eject the SD
card and pop it into the Parallella.

EXPANDING IMAGE

This command shows that only a small portion of the SD Card is available for use:

| df -h

By entering the following series of commands, the image will be expanded so that the entire

SD card’s storage size can be utilised correctly.

dmesg | grep "root"
root=/dev/mmcblk0p?2

/dev/mmcblk0p2 isthe root partition, expand this by entering:

| fdisk /dev/mmcblk0 |

Enter ‘m’ for help. Delete partition 2 (root partition), then create a new partition 2. Enter ‘d’
followed by ‘2’ to delete the root partition. Then 'n’ followed by ‘'p’ and 2" to create a new
partition 2. For the first and last sector, select default. Enter ‘p’ to confirm and write it to disk
with ‘w'.

Machine is then rebooted with:

‘sudo shutdown -r now

After reboot, enter:

| resize2fs /dev/mmcblk0p?2

This ensures the resize.

SSH SETUP
Winbows

Microsoft Windows does not have built in SSH, this means PUTTY for Windows is used. It can
be downloaded from:

e http://www.putty.org/

Linux
In Linux, SSH is built in the Terminal.

NETWORK CONNECTION

There are two ways to connect to the Parallella board. Finding the IP address assigned to the
machine, or assigning a static address to it.

DynAmic IP

Find the IP address of the Parallella board by using any sort of network tool that displays all
devices connected in a Local Area Network.

StATIC IP
Edit the file “/etc/network/interfaces” to contain the following lines:

auto ethO
iface eth0O inet static

address 10.0.0.3/8
up route add 10.0.0.2 dev ethO

Edit the file “/etc/hostname” and assign the board a hostname, then edit \etc\hosts and add

the following line:

|10.0.0.2 [Hostname]

Reboot the board to allow the operating system to process the changes.

Running ifconfig in the terminal should confirm that your board’s IP address is now 10.0.0.3.

COPRTHR SETUP

Winbows
Run the Windows installer from https://github.com/browndeer/coprthr (libstdcl-1.4.0-winz-

install.msi) and set the appropriate paths to use the headers and library.

Linux
Pre-requistites:

Linux Ubuntu
libelf-0.8.13.tar.gz (www.mrs11.de/software/libelf-0.8.13.tar.gz)

libevent-2.0.18-stable.tar.gz (github.com/downloads/libevent/libevent/libevent-
2.0.18-stable.tar.gz)

libconfig-1.4.8.tar.gz (www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz)
mM4-1.4.16.tar.gz (http://ftp.gnu.org/gnu/ms/)

flex-2.5.35.tar.gz (http://flex.sourceforge.net/)

bison-2.5.tar.gz (http://ftp.gnu.org/gnu/bison/)

Pre-compiled Package:

e coprthr-1.5.0-rc2-parallella.tgz

The libraries are unpacked by entering the following commands:

./configure
sudo make install

Unpacking the file will produce a directory browndeer/.

Enter following commands to remove previous installations as well as installing the new

version:

‘Sudo ./browndeer/uninstall coprthr parallella.sh

https://github.com/browndeer/coprthr
http://www.mr511.de/software/libelf-0.8.13.tar.gz
http://www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz
http://www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz
http://www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz
http://www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz
http://ftp.gnu.org/gnu/m4/
http://flex.sourceforge.net/
http://ftp.gnu.org/gnu/bison/

‘Sudo ./browndeer/install coprthr parallella.sh

Finally, add the following environmental variables to PATH:

export PATH=/usr/local/browndeer/bin:$PATH

export

LD LIBRARY PATH=/usr/local/browndeer/lib:/usr/local/lib:SLD L
IBRARY PATH

PROGRAMMING

The Parallela uses a host/device structure, meaning every application needs a corresponding
program for each side.

While the programs are separate, all files are created and stored on the host (in this case the
ARM chip)

HELLO WORLD EXAMPLE

DEVICE PROGRAM - E_HELLO_WORLD.C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "e lib.h"

int main (void) {

const char ShmName [] = "hello shm";

const char Msg[] = "Hello World from core
0x%03x!";

char buf[256] = { 0 };

e coreid t coreid;

e memseg t emem;

unsigned my Irow;

unsigned my col;

coreid = e get coreid();
e coords from coreid(coreid, &my row, &my col);

if (E OK != e shm attach(&emem, ShmName)) {
return EXIT FATLURE;

}
snprintf (buf, sizeof (buf), Msg, coreid);

if (emem.size >= strlen(buf) + 1) {
e write((void*) &emem, buf, my row, my col, NULL,
strlen (buf) + 1);
} else {
return EXIT FATILURE;
}

return EXIT SUCCESS;

HOST PROGRAM - HELLO_WORLD.C

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <e-hal.h>

const unsigned ShmSize = 128;
const char ShmName[] = "hello shm";
const unsigned Seglen = 20;

int main(int argc, char *argv[])
{
unsigned row, col, coreid, 1i;
e platform t platform;
e epiphany t dev;
e mem t mbuf;
int rc;

srand (1) ;

e set loader verbosity(H DO);
e set host verbosity(H DO);

e init (NULL) ;
e reset system();
e get platform info(&platform);

rc = e shm alloc(&mbuf, ShmName, ShmSize);
if (rc != E OK)

rc = e _shm attach (&mbuf, ShmName) ;
if (rc != E OK) {

fprintf (stderr, "Failed to allocate shared memory.
Error is %s\n",
strerror (errno)) ;
return EXIT FATLURE;

for (i=0; i<Seqglen; i++)

char buf[ShmSize];

row = rand() % platform.rows;
col = rand() % platform.cols;
coreid = (row + platform.row) * 64 + col +

platform.col;
printf ("$3d: Message from eCore 0x%03x (%2d, %2d) :
i, coreid, row, col);

e open(&dev, row, col, 1, 1);
e reset group (&dev);

if (E OK != e load("e hello world.elf",

E TRUE)) {

fprintf (stderr, "Failed to load
e hello world.elf\n");

return EXIT FAILURE;

}

usleep (10000) ;

e read(&mbuf, 0, 0, 0, buf, ShmSize);
printf ("\"%s\"\n", buf);

e close(&dev) ;

}

e shm release (ShmName) ;
e finalize();

return 0;

&dev,

0, O,

- linaro@linare-nano: ~/epiphany-examples/apps/hello-world
- & PP P PP

File Edit Tabs Help

DOT PRODUCT EXAMPLE
DEVICE PROGRAM - E_TASK.C

#include <stdio.h>
#include <stdlib.h>
#include "e-lib.h"
#include "common.h"

int main (void)
{

unsigned *a, *b, *c, *d;

//Clear Sum
(*(c))=0x0;

//Sum of product calculation

for (i=0; 1<N/CORES; 1i++) {
(*(c)) += ali]l * b[i];

}

//Raising "done" flag
(*(d)) = 0x00000001;

//Put core in idle state
asm __volatile ("idle");

}

int 1i;

a = (unsigned *) 0x2000;//Address of a matrix
(transfered here by host)

b = (unsigned *) 0x4000;//Address of b matrix
(transfered here by host)

c = (unsigned *) 0x6000;//Result

d = (unsigned *) 0x7000;//Done

HOST PROGRAM - MAIN.C

#include <stdlib.h>
#include <stdio.h>
#include <e-hal.h>
#include "common.h"

#define RESULT 85344 //recognize /Sum {i=0}"{n-1} i"2

\frac{N(N-1) (2N-1) } {6}

int main (int argc, char *argv([]) {
e platform t platform;
e epiphany t dev;

int a[N], b[N], c[CORES];

int done[CORES],all done;

int sop;

int 1i,73;

int sections = N/CORES; //assumes N % CORES = 0
unsigned clr 0;

//Calculation being done

printf ("Calculating sum of products of two integer vectors
of length %d initalized from (0..%d) using %d Cores.\n",N,N-
1,CORES) ;

//Initalize Epiphany device

e init (NULL);

e reset system();
//reset Epiphany

e get platform info(&platform);

e open(&dev, 0, 0, platform.rows, platform.cols); //open
all cores

//Initialize a/b input vectors on host side
for (i=0; 1i<N; i++){

ali] = 1i;

b[i] = i;
}

//Load program to cores
e load group("e task.elf", &dev, 0, 0, platform.rows,
platform.cols, E FALSE);

//1. Copy data (N/CORE points) from host to Epiphany local
memory
//2. Clear the "done" flag for every core
for (i=0; i<platform.rows; i++) {
for (j=0; j<platform.cols;j++) {
e write(&dev, i, j, 0x2000,
&a[(i*platform.cols+j) *sections], sections*sizeof (int));
e write(&dev, i, J, 0x4000,
&b [(i*platform.cols+j) *sections], sections*sizeof (int));
e write(&dev, i, j, 0x7000, &clr, sizeof(clr));
}
}

// start cores
e start group (&dev);

//Check if all cores are done
while (1) {
all done=0;
for (i=0; i<platform.rows; i++) {
)

for (j=0; j<platform.cols;j++) {

e read(&dev, 1i, j, 0x7000, &done[i*platform.cols+j],
sizeof (int)) ;
all donet+=done[i*platform.cols+j];
}
}
1f(all done==CORES) {
break;
}
}

//Copy all Epiphany results to host memory space
for (i=0; i<platform.rows; i++) {
for (3j=0; j<platform.cols;j++) {
e read(&dev, 1i, j, 0x6000, &cli*platform.cols+j],
sizeof (int)) ;
}
}

//Calculates final sum-of-product using Epiphany results as
inputs
sop=0;
for (i=0; i<CORES; i++) {
sop += c[i];

}

//Print out result

printf ("Sum of Product Is %d!\n",sop);
//Close down Epiphany device

e close(&dev);

e finalize();

if (sop==RESULT) {
return EXIT SUCCESS;
}
else{
return EXIT FAILURE;
}

EPIPHANY BSP - HELLO WORLD
DEVICE PROGRAM - E_CORE_HELLO.C

#include <e bsp.h>

int main ()
{
bsp begin();

int n = bsp nprocs();
int p = bsp pid();

ebsp message ("Hello world from core %d/%d", p, n);
bsp end();

return O;

HOST PROGRAM - HOST_HELLO.C

#include <host bsp.h>
#include <stdio.h>

int main(int argc, char **argv)

{ bsp init ("ecore hello.srec", argc, argv);
bsp begin(bsp nprocs());
ebsp spmd () ;

bsp end();

return 0;

RUNNING MAKEFILE

@ parallella@parallella: ~/parallella-exarmples/ebsp-hello — O x

PROGRAM OUTPUT

@ parallella@parallella: ~/epiphany-bsp/examples/bin/hello — O x

XTEMP

The xTemp utility is a program under the Parallella Utility package, where the temperature
of the board can be visualised. With SSH access, X11 forwarding is needed to see the
graphical output on the remote connection.

2 parallella@parallella: ~/parallella-examples — O X

X stemp — O e
40,0

2.5
0.7

PARALLELA EPIPHANY WORKSPACE CREATION

The following commands in the Terminal or PuTTY SSH connection will allow the workspace

creation. This will allow for easier programming on the Epiphany.

cd ~/Downloads

wget

ftp://ftp.parallella.org/esdk/o0ld/esdk.5.13.07.10 linux x86 6
4 armv/l.tgz

sudo mkdir -p /opt/adapteva

sudo mv esdk.5.13.07.10 linux x86 64 armv7l.tgz /opt/adapteva
cd /opt/adapteva

sudo tar xvf esdk.5.13.07.10 linux x86 64 armv/l.tgz

sudo 1ln -sTf esdk.5.13.07.10 /opt/adapteva/esdk

sudo apt-get install libmpfr-dev libgmp3-dev libmpc-dev
openjdk-6-jre tcsh csh g++ -y

sudo nano /etc/environment
PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin
:/bin:/usr/games:/usr/local/games:/opt/adapteva/esdk/tools/e-
gnu/bin”

EPIPHANY HOME="/opt/adapteva/esdk”

LD LIBRARY PATH="/usr/lib:/usr/lib/x86 64-linux-gnu”

cd /usr/lib/x86 64-linux-gnu

sudo cp libmpc.so libmpc.so.2

sudo ldconfig

sudo cp libmpfr.so libmpfr.so.l

sudo cp libgmp.so libgmp.so.3

sudo nano /opt/adapteva/esdk/tools/host/bin/echo-process

Save empty file

sudo chmod 777 /opt/adapteva/esdk/tools/host/bin/echo-process

| e—eclipse

Create a workspace and name the project. Since the Epiphany is 16 core in this case, we must
have the settings of:

Number of rows = 4

Number of columns = 4

Row number in first core = 32
Column number of first core = 8

This creates a master project for all projects that will be created.

To program the Epiphany, we now change the host name to the Epiphany IP address or host
name in our network. The ‘stop at main’ checkbox should be unticked and both ‘Resume’ and
‘Verbose mode’ should be ticked.

The final step is to right click the first core project and complete the following:
C/C++ Build — Settings — Epiphany Linker — Linker Description File
Change Select LDF to: ${EPIPHANY_HOME}/bsps/current/legacy.ldf

In the Epiphany Linker, add e-lib to the libraries, then apply these settings to all of the
projects. A dialog should pop up showing success messages if completed correctly.

EPIPHANY PROGRAM EXECUTION

Type e-server in the Terminal.
The Epiphany listens on the port 51000 by default.

CUURENT & FUTURE WORK

As outlined, the first half of the project is research based, with the second half being much
more practical. | have already moved towards the practical side of things as | attend seminars
and do in house experiments with the senior Engineer. Currently | am in the middle of

experimenting with Threaded MPI from Brown Deer Technology and looking at Bulk Sync
Parallel computing as well.

Future work will include finishing up the experimentation and move on to utilising some of
the core functions to develop applications that may be of use to the Epiphany architecture.

REFERENCES

Compucon.co.nz. (2009). Compucon Computers NZ - Quality Servers and Workstations - Company
Profile. [online] Available at: http://www.compucon.co.nz/content/view/27/242/.

Suzannejmatthews.github.io. (2016). Technical Musings : Parallella Setup Tutorial. [online]
Available at: http://suzannejmatthews.github.io/2015/05/29/setting-up-your-parallella/.

Adapteva, (2011). Epiphany Architecture Reference. [online] Available at:
http://www.adapteva.com/docs/epiphany arch ref.pdf.

Adapteva, (2016). Epiphany Datasheet [online] Available at:
http://adapteva.com/docs/e16g301 datasheet.pdf.

Brown Deer Tecnology, (2013) COPRTHR API Reference. [online] Available at:
http://www.browndeertechnology.com/docs/coprthr_api_ref.pdf.

http://www.compucon.co.nz/content/view/27/242/
http://suzannejmatthews.github.io/2015/05/29/setting-up-your-parallella/
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
http://adapteva.com/docs/e16g301_datasheet.pdf
http://www.browndeertechnology.com/docs/coprthr_api_ref.pdf

